Measuring Double Stars in Ursa Minor with a Micrometer and an Eyepiece Reticle

Papadimitriou Athanassios
Astronomical Society of Corfu, Greece

Abstract

Twenty-two binary stars were measured in Ursa Minor by using a micrometer for the measuring of the angular distance. An eyepiece reticle was also used for the more accurate measuring of angle position.

Introduction

First of all I used the excellent search engine for double stars "Stelle Doppie" and I selected double stars appropriate for my equipment for instance double stars with separation greater than 6 arcsec, D mag bigger than 1 mag and stars not fainter than 12 mag . Also stars which were measured very recently were excluded.

Equipment

My equipment included a Celestron's equatorial mounts CG5 , a newtonian telescope Konus 200 /1000 , a Meade 12 mm wireless astrometric eyepiece, a barlow Tele Vue 2 x and Meade 9 mm wireless Illuminated reticle eyepiece with micrometric x - y positioning controls. For the measuring of separation the astrometric eyepiece with barlow in which the linear scale was calibrated by known method, was used and it was found that the micrometer scale has divisions that are equal to 11.09 arcsec. An outer protractor 360° was constructed that was attached to the barlow and a pointer that was attached to the eyepiece. (Ronald Tanguay 1998) A lever was also placed on the barlow so as to have a better and without any vibrations, tightening of the eyepiece .For the measuring of the position angle an eyepiece with adjustable reticle was used which was aligned with an outer protractor, Figure 1.

This eyepiece was selected because:

1) When we measure the position angle we should calibrate the protractor with the motion of the star in the R.A therefore when the drive motor is turned off the primary star has to run parallel to the linear scale. If we use micrometer for this rea-

Figure 1. The reticle eyepiece with the outer protractor.
son, the numbers on the linear scale will prevent from a proper evaluation.
2) After this alignment with the method described above, we must rotate the eyepiece in order to have the primary and secondary star in the same direction. Without doubt the measurement is better when both stars are situated between the lanes of the reticle, Figure 2.
3) When using the crosshairs of regulators we do not have to use the controller to bring the stars near the crosshair. Certainly the movement of the reticle

Measuring Double Stars in Ursa Minor with a Micrometer and an Eyepiece Reticle

Figure 2. The stars are situated between the lanes of the reticle
providing a useful tool with lots of information about binaries on his website: http://stelledoppie.goaction.it

References

Argyle, Robert, 2004,, Observing and Measuring Visual Double Stars, London: Springer.

Tanguay, Ronald, The Double Star Observer's Handbook, Saugus, MA: Double Star Observer, 1998.
does not affect the correct alignment with the outer protractor.

Comments

All observations took part in the summer of 2014 on Corfu Island. Primarily a few test measurements were performed in recently measured stars in order to ascertain if the equipment has significant deviations from the recent measurements. For example the test that was done in STF 1972 AB in U.Mi has very few deviations from the last measurement in 2011(table 1). Apparently the equipment was proved to be well alighted and calibrated. There were 3 observations performed on each star and the final value was defined as the average of measurements . For both measurements barlow 2 x was used. The technique of measuring the position angle with reticle eyepiece was considered particularly accurate and relaxing. Table 2 gives a list of 22 observation results obtained in the summer of 2014.

Acknowledgments

I would like to thank the members of the Astronomical Society of Corfu for the concession of the telescope .

I would also like to thank Gianluca Sordiglioni for

Table 1. Test with STF 1972AB

NAME	R.A	DEC	MAG1	MAG2	LAST SEP	OBS	SEP	LAST P.A
OBS P.A								
STF 1972 AB	152911	$(+) 802655$	6.60	7.30	31.40	31.50	79.00	79.00

Measuring Double Stars in Ursa Minor with a Micrometer and an Eyepiece Reticle

Table 2. Measures of 22 Double Stars in Ursa Minor

NAME	R.A	DEC	MAG 1	MAG 2	$\begin{aligned} & \hline \text { SEP } \\ & \text { (}) \end{aligned}$	P.A (θ)	N	DATE	NOTES
STF1761	133201	714301	9.30	10.10	20.4	69.8	3	2014.431	1
STF1798	135502	$78 \quad 2359$	7.60	9.60	8.3	11.0	3	2014.431	2
STF1822	140937	725004	9.00	10.80	14.3	50.0	3	2014.491	3
STF1840AB	141954	674656	7.00	10.00	30.3	222.0	3	2014.431	4
STF1841AB	142107	674810	7.30	11.00	35.2	264.3	3	2014.431	5
STF1859	142831	730318	8.60	10.10	20.5	234.5	3	2014.431	6
STTA130	143217	802027	9.00	9.40	52.3	298.0	3	2014.494	7
STF1897	145335	694546	7.60	11.00	34.2	319.5	3	2014.491	8
S 666	145648	$74 \quad 5403$	7.00	9.00	167.8	32.5	3	2014.494	9
HJL1089	145924	831939	9.60	10.70	58.9	333.0	3	2014.491	10
H 5 86AB	151716	711240	7.30	11.00	51.7	130.5	3	2014.491	11
H 5 86AC	151716	711240	7.30	11.40	94.6	115.0	3	2014.491	12
HAU 23	152850	803650	9.50	11.50	35.8	63.0	3	2014.491	13
STF1972AC	152937	802537	6.60	11.40	187.0	101.0	3	2014.431	14
STF1971	$\begin{array}{llll}15 & 3512\end{array}$	$75 \quad 2016$	9.60	12.00	14.3	315.0	3	2014.494	15
A 856AC	154322	811909	8.30	11.10	62.7	343.0	3	2014.494	16
UC 3072	155148	$\begin{array}{ll}73 & 19\end{array} 02$	8.70	11.30	43.5	37.8	3	2014.491	17
STF2125	164057	822153	9.00	10.50	11.6	180.3	3	2014.491	18
KU 1	164306	773048	6.00	11.50	104.5	13.0	3	2014.494	19
HDO 143	164558	820214	4.20	11.20	77.0	2.0	3	2014.494	20
WAL 75AC	165718	865040	8.40	10.70	78.1	92.0	3	2014.494	21
WFC 190	172004	$75 \quad 2233$	9.80	10.50	8.3	39.0	3	2014.491	22

Table Notes:

1. Rho increased $0.1^{\prime \prime}$, theta decreased 1.2°
2. Rho increased $0.8^{\prime \prime}$, theta consistent with trend reported
3. Rho decreased $0.6^{\prime \prime}$, theta decreased 2°
4. Rho increased $3^{\prime \prime}$, theta consistent with trend reported
5. Rho increased $0.3^{\prime \prime}$, theta decreased 0.7°
6. Rho increased $0.6^{\prime \prime}$, theta increased 0.5°
7. Rho increased $1.2^{\prime \prime}$, theta decreased 1°
8. Rho decreased $0.4^{\prime \prime}$, theta increased 0.5°
9. Rho increased 3.2", theta increased 0.5°
10. Rho decreased $1.2^{\prime \prime}$, theta consistent with trend reported
11. Rho increased $0.7^{\prime \prime}$, theta increased 0.5°
12. Rho increased $0.1^{\prime \prime}$, theta increased 1°
13. Rho increased $0.8 "$, theta decreased 1°
14. Rho increased $34.7^{\prime \prime}$, theta decreased 4° (measures reported from 1994)
15. Rho decreased $0.9^{\prime \prime}$, theta decreased 3°
16. Rho decreased $3.2^{\prime \prime}$, theta increased 3° (measures reported from 1999)
17. Rho increased $2.6^{\prime \prime}$, theta decreased 1.2°
18. Rho decreased $0.3^{\prime \prime}$, theta decreased 0.7°
19. Rho decreased $1.8^{\prime \prime}$, theta consistent with trend reported
20. Rho decreased $0.4^{\prime \prime}$, theta increased 1°
21. Rho decreased $1.2^{\prime \prime}$, theta increased 3°
22. Rho increased $0.3^{\prime \prime}$, theta decreased 1°
