Jump to content

ΠΑΠΑΣΩΤΗΡΙΟΥ ΛΕΩΝ

Μέλη
  • Αναρτήσεις

    1630
  • Εντάχθηκε

  • Τελευταία επίσκεψη

  • Ημέρες που κέρδισε

    8

Όλα αναρτήθηκαν από ΠΑΠΑΣΩΤΗΡΙΟΥ ΛΕΩΝ

  1. Η ανακάλυψη βαρυτικών κυμάτων από την συγχώνευση αστρικών μαύρων τρυπών είναι πια ρουτίνα για τους αστρονόμους. Η ανακάλυψη βαρυτικών κυμάτων από τη συγχώνευση 2 γαλαξιακών κεντρικών μαύρων τρυπών, με εκατομμύρια ηλιακές μάζες η καθεμία, είναι μια άλλη υπόθεση. Η βασική διαφορά στην δυνατότητα ανίχνευσης βαρυτικών κυμάτων της πρώτης με της δεύτερης περίπτωσης είναι ότι ενώ η συχνότητα στα βαρυτικά κύματα από συγχώνευση αστρικών μαύρων τρυπών είναι της τάξης των μερικών εκατοντάδων Hertz, τα βαρυτικά κύματα από συγχώνευση γαλαξιακών κεντρικών μαύρων τρυπών έχουν συχνότητα δισεκατομμυριοστά του Hertz, που μεταφράζεται σε μια μόλις ταλάντωση (ένα σήμα) σε χρονικό διάστημα ετών. Αυτό έχει να κάνει με το μέγεθος των 2 παραπάνω ειδών των μαύρων τρυπών. Οι κεντρικές γαλαξιακές μαύρες τρύπες διανύουνε μεγάλες τροχιές η μία γύρω από την άλλη στη φάση συγχώνευσης. Έτσι οι σημερινοί ανιχνευτές βαρυτικών κυμάτων δεν μπορούν να <πιάσουν> ένα τέτοιο σήμα. Η φύση όμως μας δίνει μια άλλη δυνατότητα. Τα πάλσαρ έχουν εξαιρετική ακρίβεια στους παλμούς τους, και πολλά από αυτά τα μελετάμε εδώ και δεκαετίες. Αν έχουμε μια φυσική συστοιχία από πάλσαρ (πάλσαρ στην σειρά στην γραμμή θέασής μας) και μπορέσουμε να μετρήσουμε μια διαταραχή της συχνότητας των πάλσαρ της συστοιχίας, είναι δυνατό να αντιστοιχίσουμε αυτό το σήμα με συγχώνευση κεντρικών μαύρων τρυπών. Είναι μια πολύπλοκη διαδικασία όπου μεταξύ άλλων πρέπει να υπολογιστεί και η διαφορετική γωνία κάθε πάλσαρ προς τη Γη μας. Τα ραδιοτηλεσκόπια που συμμετέχουν σε αυτή την αναζήτηση, μεταξύ των οποίων και το τεράστιο κινέζικο FAST, πέτυχαν μια μέτρηση που αποτελεί ένδειξη (όχι ακόμα απόδειξη) συγχώνευσης γαλαξιακών κεντρικών μαύρων τρυπών. Οι γαλαξιακές συγχωνεύσεις, και οι συγχωνεύσεις των κεντρικών μαύρων τρυπών τους, είναι διαδικασίες δις ετών. Αλλά συμβαίνουν σε όλα τα γαλαξιακά σμήνη, έτσι δεν είναι και τόσο σπάνια γεγονότα. Πηγή EPTA collaboration, search gor gravitational wave signals
  2. Εδώ και αρκετά χρόνια οι αστρονόμοι έχουν τα μέσα να παρατηρούν την εισροή και εκροή αερίου από τους γαλαξίες. Γύρω από έναν τυπικό γαλαξία υπάρχει το περιγαλάξιο αέριο (cirumgalactic gas). Αυτό το αέριο αποτελεί την πηγή τροφοδοσίας ύλης για δημιουργία αστεριών στους γαλαξίες. Το αέριο εισέρχεται με σχετικά ομαλό ρυθμό στην γαλαξιακή άλως, και ένα μέρος του φτάνει στον δίσκο, συμπυκνώνεται και δημιουργεί μοριακά νεφελώματα. Η αρχική προέλευση αυτού του αερίου είναι η μεσογαλάξια ύλη -αέριο (intergalactic medium). Το αέριο αυτό δεν <ανήκει> βαρυτικά σε κανένα γαλαξία, υπάρχει παντού ανάμεσα στους γαλαξίες ενός σμήνους και είναι πολύ πιο αραιό από το περιγαλάξιο αέριο. Οι αστρονόμοι παρατηρούν μια εκροή αερίου από τους γαλαξίες που σχετίζεται με τις εκρήξεις σουπερνόβα των μεγάλης μάζας αστεριών, τους αστρικούς ανέμους νεαρών αστεριών και τους πίδακες των κεντρικών γαλαξιακών μαύρων τρυπών. Το αέριο αυτό είναι εμπλουτισμένο σε βαρύτερα χημικά στοιχεία, σε σχέση με το μεσογαλάξιο αέριο. Αρχικά έχει μεγάλη θερμοκρασία, κοντά στο 1 εκατομμύρια βαθμούς, μεγαλύτερη από το μεσογαλάξιο αέριο (τυπική θερμοκρασία μερικές εκατοντάδες χιλιάδες βαθμοί). Συμπυκνώνεται ξανά γύρω από τον γαλαξία από όπου προήρθε, δηλαδή δεν διαφεύγει από το βαρυτικό του πεδίο (βασικά από το βαρυτικό πεδίο της σκοτεινής ύλης). Αυτό έχει ως αποτέλεσμα να ελαττώνεται η θερμοκρασία του αερίου που διέφυγε του γαλαξία κάτω από αυτή του μεσογαλάξιου αερίου, κοντά στους 10.000 βαθμούς. Σαν περιγαλάξιο αέριο ξαναπέφτει στον γαλαξία. Όταν διακοπεί αυτός ο κύκλος, δηλαδή ελαττωθεί η εκροή αερίου λόγω υποβάθμισης των παραγόντων δημιουργίας της, άρα και η εκ νέου εισροή του αερίου, διακόπτεται και η δημιουργία νέων αστεριών.
  3. Το ανοιχτό σμήνος NGC346 βρίσκεται στο μικρό Μαγγελανικό νέφος, σε απόσταση 210.000 έτη φωτός. Εκεί φιλοξενείται το διπλό αστέρι SSN7. Από την φασματοσκοπική ανάλυση του διπλού αστεριού οι αστρονόμοι συμπεραίνουν ότι το ένα αστέρια απορροφάει ύλη από το δεύτερο. Η ανάλυση των δεδομένων δείχνει ότι τα 2 αστέρια έχουν παρόμοια λαμπρότητα. Το ένα όμως είναι πολύ πιο θερμό, αλλά είναι και αυτό με την μικρότερη μάζα. Αυτό δείχνει ότι στην φάση του ερυθρού γίγαντα η διαστολή του ήταν αρκετή ώστε ο συνοδός του να του απορροφήσει ύλη. Δηλαδή τα εξωτερικά στρώματα του γίγαντα έφτασαν κοντά στον συνοδό του. Έτσι ο γίγαντας σε περίπου 100.000 έτη θα έχει απωλέσει το εξωτερικό του στρώμα από Υδρογόνο. Το πιο εσωτερικό του στρώμα αποκαλύπτεται σταδιακά και είναι φυσικά μεγαλύτερης θερμοκρασίας, έτσι είναι ήδη το πιο καυτό αστέρι στο σύστημα. Ενώ αρχικά το αστέρι που εξελίχτηκε σε γίγαντα είχε την μεγαλύτερη μάζα από τα 2 αστέρια του συστήματος, σήμερα το αστέρι με την μεγαλύτερη μάζα είναι ο συνοδός του. Ο γίγαντας θα εξελιχτεί σε αστέρι Wolf- Rayet πριν καταλήξει σε αστρική μαύρη τρύπα. Η αστρική μαύρη τρύπα θα περιφέρεται γύρω από το άλλο αστέρι του συστήματος. Όταν και αυτό εξελιχτεί σε ερυθρό γίγαντα θα απωλέσει μάζα προς την μαύρη τρύπα, θα εξελιχτεί και αυτό σε Wolf- Rayet και μετά σε μαύρη τρύπα.
  4. Εδώ και μερικά χρόνια παρατηρούνται αυξομειώσεις στην λαμπρότητα του Μπετελγκέζ. Αυτές οφείλονται σε σκόνη που ελαττώνει το ορατό φως που φτάνει στα τηλεσκόπιά μας από το αστέρι. Μια ομάδα αστρονόμων παρατήρησε από την καμπύλη φωτός του ότι ο Μπετελγκέζ παρουσιάζει 4 περιοδικούς παλμούς. Έχουν περίοδο 2200, 420, 230 και 185 ημέρες. Βάση του μοντέλου αστρικής εξέλιξης που ανέπτυξαν, αυτοί οι παλμοί δείχνουν ότι ο Μπετελγκέζ βρίσκεται στο τέλος της καύσης Άνθρακα στον πυρήνα του. Μετά από την καύση Άνθρακα στον πυρήνα ενός αστεριού μεγάλης μάζας, απαιτούνται μόλις μερικές εβδομάδες να συντηχθεί και το Πυρίτιο, και ημέρες για τα υπόλοιπα χημικά στοιχεία ώστε να γεμίσει ο πυρήνας με Σίδηρο. Άρα αν είναι σωστό το μοντέλο αστρικής εξέλιξης των ερευνητών, ο Μπετελγκέζ ήδη έχει εκραγεί ως σουπερνόβα. Το φως από την έκρηξη χρειάζεται 640 έτη να φτάσει μέχρι τη Γη. Πάντως η απόσταση αυτή δεν ανησυχεί τους αστρονόμους, για να είναι μια έκρηξη σουπερνόβα επικίνδυνη για τη Γη (ακτινοβολία γ) πρέπει να συμβεί σε απόσταση λιγότερο από 60 έτη φωτός. Σε τέτοια απόσταση δεν υπάρχει κανένα αστέρι μεγάλης μάζας, το κοντινότερο αστέρι που μπορεί να εκραγεί σε σουπερνόβα, το IK Πηγάσου, απέχει 147 έτη φωτός από εμάς. Πηγή Saio H et al, The evolutionary stage of Betelgeuse inferred from its pulsation periods
  5. Ανάμεσα στον Τοξότη και τον Σκορπιό υπάρχει το σχετικά αμυδρό σφαιρωτό σμήνος Μ19. Πρόκειται για ένα κλασσικό σφαιρωτό σμήνος. Η βαρυτική κατάρρευση ενός γιγάντιου μοριακού νεφελώματος πριν από 12 δις έτη δημιούργησε το Μ19. Σήμερα έχει μέγεθος 70 έτη φωτός, βρίσκεται σε απόσταση 28.000 ετών φωτός από τη Γη και φιλοξενεί αστέρια με συνολική μάζα 1 εκατομμύρια ηλιακές. Η απόστασή του από το κέντρο του Γαλαξία είναι μόλις 6500 έτη φωτός. Περιφέρεται γύρω από το κέντρο του Γαλαξία σε ελλειπτική τροχιά. Λόγω της εγγύτητας στο κέντρο του Γαλαξία οι παλιρροιακές δυνάμεις παραμορφώνουν το σχήμα του σε ελλειπτικό. Εκτός από τον αρχαίο αστρικό πληθυσμό του, το Μ19 φιλοξενεί και μερικά αστέρια νεαρότερης ηλικίας και με μεγαλύτερη μεταλλικότητα. Αυτά μάλλον τα συσσώρευσε από έναν γαλαξία που συγχωνεύτηκε με τον δικό μας πριν από 11 εκατομμύρια έτη (Kraken galaxy). Εκτιμάται ότι το 10% των σφαιρωτών σμηνών του Γαλαξία μας προέρχονται από αυτή την γαλαξιακή συγχώνευση.
  6. Η γρήγορη ανάπτυξη των γαλαξιών στο πρώιμο σύμπαν οφείλεται και με την άμεση εισροή αερίου σε αυτούς, εκτός από τις γαλαξιακές συγχωνεύσεις. Με τα τηλεσκόπια ALMA οι αστρονόμοι απεικόνισαν μια στενή ροή ψυχρού αερίου μήκους 330.000 ετών φωτός σε έναν γαλαξία (4C 41.17), που το φως του χρειάστηκε 12 δις έτη να φτάσει μέχρι τη Γη (z =3.8). Το αέριο ανιχνεύτηκε από την μικρή ποσότητα Άνθρακα που περιέχει. Σχεδόν όλη η ύλη του αερίου αποτελείται από Υδρογόνο, και ο πολύ πιο εύκολα ανιχνεύσιμος Άνθρακας χρησιμοποιείται ως δείκτης συνολικής μάζας του αερίου. Η παρουσία Άνθρακα και Οξυγόνου (σε μορφή CO) δείχνει ότι δεν πρόκειται για αρχέγονο αέριο του σύμπαντος. Το αέριο που συσσωρεύει ο παραπάνω γαλαξίας έχει εμπλουτιστεί χημικά μέσω αστρογέννησης, ο Άνθρακας και το Οξυγόνο παράγονται μέσα στα αστέρια. Πρόκειται για αέριο που εκτοξεύτηκε από αυτόν ή από άλλον γαλαξία κατά την βαρυτική αλληλεπίδραση γαλαξιών.
  7. Το σφαιρωτό σμήνος Μ4 αποτελεί ένα καθαρά καλοκαιρινό αντικείμενο παρατήρησης, κοντά στον Αντάρη. Βρίσκεται σε απόσταση 7200 έτη φωτός, σχετικά κοντά μας για σφαιρωτό σμήνος. Πρόσφατα οι αστρονόμοι, βασιζόμενοι σε παρατηρήσεις 12 ετών, ανακάλυψαν μια μαύρη τρύπα μεσαίου μεγέθους. Δηλαδή με μεγαλύτερη μάζα από τις αστρικές μαύρες τρύπες αλλά και μικρότερη από τις κεντρικές μαύρες τρύπες των γαλαξιών. Η μάζα της εκτιμάται στις 800 ηλιακές, και ανιχνεύτηκε από τις κινήσεις των κοντινών της αστεριών. Τα σφαιρωτά σμήνη είναι αρχαία αντικείμενα με μεγάλη πυκνότητα σε αστέρια, κάτι που ευνοεί την ανάπτυξη μαύρων τρυπών μεσαίας μάζας.
  8. Όταν συγχωνεύονται γαλαξίες αλληλοεπιδρούν βαρυτικά μεταξύ τους οι κεντρικές μαύρες τρύπες τους. Αν συγχωνεύονται 2 γαλαξίες οι κεντρικές μαύρες τρύπες τους θα συγχωνευτούν και αυτές. Όταν όμως υπάρχει και τρίτος γαλαξίας, είναι πολύ πιθανό οι μαύρες τρύπες να εκτοξευτούνε έξω από τον τελικό γαλαξία. Αυτό συμβαίνει χάρη στην βαρυτική αλληλεπίδραση των 3 σωμάτων (μαύρων τρυπών). Κοντά στον νάνο γαλαξία RCP28 στο Κήτος οι αστρονόμοι παρατήρησαν μια <λωρίδα> αστεριών να απομακρύνεται από αυτόν. Στην κορυφή της είναι λαμπρότερη και πιο στενή, κάτι που αποκλείει να πρόκειται για πίδακα ενεργού γαλαξία. Η φασματική ανάλυση (ερυθρολίσθηση) των 2 αντικειμένων που το φως τους χρειάστηκε 5,4 δις έτη να φτάσει στην Γη, έδειξε ότι ο νάνος γαλαξίας έχει ακτίνα μόλις 4000 έτη φωτός, αλλά η λωρίδα αστεριών 200.000 έτη φωτός μήκος. Η ηλικία της <λωρίδας> εκτιμάται στα 100 εκατομμύρια έτη και η μάζα της στα 7 δις ηλιακές. Παρουσιάζει έντονη αστρογέννηση, περίπου 70 ηλιακές μάζες το έτος. Ο μηχανισμός δημιουργίας της λωρίδας εκτιμάται ως εξής. Μια μαύρη τρύπα μεγάλης μάζας που διέφυγε από τον γαλαξία μέσω βαρυτικής αλληλεπίδρασης 3 σωμάτων, 39 εκατομμύρια έτη πριν την εικόνα που παρατηρούμε σήμερα. Στην πορεία της στον μεσογαλάξιο χώρο κινείται σε μια περιοχή πλούσια σε αέριο, με αποτέλεσμα την δημιουργία αστεριών. Αυτό υποστηρίζεται από την νεαρή ηλικία των αστεριών της λωρίδας. Η μαύρη τρύπα συμπιέζει το αέριο που συναντάει, δημιουργώντας συνθήκες αστρογέννησης. Μοιάζει σαν να φτιάχνει έναν δικό της γαλαξία!
  9. Αυτή η πανελλήνια, μαζί με το συνέδριο αστρονομίας πέρυσι τον Οκτώβριο στην Πάτρα, ήταν τα 2 μεγάλα γεγονότα που έφεραν την ερασιτεχνική αστρονομία στην Ελλάδα πάλι στην κανονικότητα (μετά την περίοδο covid). Ελπίζω στις επόμενες πανελλήνιες να δραστηριοποιηθούν περισσότεροι οι νέοι σε ηλικία ερασιτέχνες αστρονόμοι. Η ερασιτεχνική αστρονομία στην Ελλάδα πρέπει να περάσει στην επόμενη γενιά, οι <δεινόσαυροι> του χώρου σαν εμένα πρέπει να περιοριστούμε στο να προσέχουμε μην μας πέσει κανένας αστεροειδής στο κεφάλι. Σε πολλές εθελοντικές δραστηριότητες όπως η προετοιμασία του χώρου της πανελλήνιας, η διάθεση τηλεσκοπίων για το κοινό, η οργάνωση και επιμέλεια της εξόρμησης κ.λπ., οι περισσότεροι εθελοντές ήταν οι ίδιοι με δέκα χρόνια παλαιότερα. Τότε λειτουργούσαμε ως μια πολύ καλή παρέα φίλων που μας ένωνε η αστρονομία, αλλά σήμερα η δυναμική της ερασιτεχνικής αστρονομίας βρίσκεται σε άλλο επίπεδο. Ο Πάρνωνας είναι πράγματι το ιερό βουνό της ερασιτεχνικής αστρονομίας. Αν κάποτε γραφτεί ένα βιβλίο για την ανάπτυξη της ερασιτεχνικής αστρονομίας στην Ελλάδα, ο Πάρνωνας θα είναι σίγουρα το σημείο αναφοράς του θέματος.
  10. Ένας λευκός νάνος, ο HP99 159 στο μεγάλο νέφος του Μαγγελάνου, παρουσιάζει ισχυρές γραμμές Ηλίου στο φάσμα του. Φαίνεται να συσσωρεύει Ήλιο από τον συνοδό του και όχι Υδρογόνο, όπως συμβαίνει στις περισσότερες περιπτώσεις αλληλεπίδρασης διπλών αστεριών. Η θεωρία των εκρήξεων SNIa προβλέπει ότι ένας λευκός νάνος συσσωρεύει υλικό (βασικά Υδρογόνο) από τον συνοδό του μέχρι να αυξήσει την μάζα του πέρα από το όριο Chandrasekhar (1,4 ηλιακές μάζες). Τότε ακολουθάει η έκρηξη SNIa, που διαλύει τελείως τον λευκό νάνο. Όμως αυτές οι σουπερνόβα έχουν ως χαρακτηριστικό τους (όπως και οι σουπερνόβα αστρικής κατάρρευσης SNIb) την απουσία Υδρογόνου στο φάσμα τους. Κανονικά θα έπρεπε να αποτυπώνεται στο φάσμα το Υδρογόνο που υπάρχει στον δίσκο προσαύξησης γύρω από τον λευκό νάνο κατά την έκρηξη. Ο παραπάνω λευκός νάνος αποτελεί ένα μέρος της λύσης του προβλήματος. Ο αστέρας- συνοδός του έχει χάσει όλο το Υδρογόνο του και πλέον τροφοδοτεί τον λευκό νάνο με Ήλιο. Ενώ περιμένουμε να ανακαλύψουμε και άλλους λευκούς νάνους που συσσωρεύουν Ήλιο, μια πιθανή εκδοχή είναι αυτοί να καταλήγουν σε SNIax, που είναι μια πολύ ασθενέστερη έκρηξη σουπερνόβα από την κλασσική SNIa. Η τελευταία μπορεί να έχει ως βασικό μηχανισμό δημιουργίας την συγχώνευση 2 λευκών νάνων και όχι την συσσώρευση ύλης, κάτι που δικαιολογεί την απουσία Υδρογόνου. Ο ρυθμός καύσης του Υδρογόνου που συσσωρεύεται από τον συνοδό αστέρα στην επιφάνεια ενός λευκού νάνου είναι ιδιαίτερα σημαντικός για την παραπάνω θεωρία. Αν η καύση γίνεται ομαλά τότε το Ήλιο που προκύπτει δεσμεύεται στον λευκό νάνο, αυξάνοντας την μάζα του μέχρι το κρίσιμο όριο Chandrasekhar. Αν η καύση γίνεται βίαια, ακολουθούν εκρήξεις Νόβα με συνέπεια η μάζα που συσσωρεύτηκε στον λευκό νάνο να απομακρυνθεί από αυτόν. Σε αυτήν την περίπτωση ο λευκός νάνος δύσκολα θα φτάσει το κρίσιμο όριο μάζας.
  11. Είναι το πιο γνωστό διπλό αστέρι του ουρανού με 2 αστέρια διαφορετικού χρώματος. Ενώ τα πράγματα είναι σχετικά απλά για το μπλε αστέρι (Albireo B, φασματικού τύπου B8, 100.00 ετών, με 4 σχεδόν ηλιακές μάζες και θερμοκρασία 13000 Κ), τα πράγματα είναι πολύπλοκα για τον κόκκινο γίγαντα (Albireo A) με 5 ηλιακές μάζες. Πρόκειται ουσιαστικά για πενταπλό σύστημα. Αποτελείται από έναν ερυθρό γίγαντα (Aa) που όμως αναλύεται σε ερυθρό γίγαντα με συνοδό έναν ερυθρό νάνο (Ad). Ο ερυθρός γίγαντας φαίνεται να έχει επίσης συνοδό ένα αστέρι κυρίας ακολουθίας 2,5 ηλιακών μαζών (Ac1). Αυτό όμως φαίνεται να περιφέρεται γύρω από μια αστρική μαύρη τρύπα 5 ηλιακών μαζών (Ac2). Έτσι έχουμε 3 αστέρια κυρίας ακολουθίας (έναν κόκκινο νάνο και 2 αστέρια μεσαίας μάζας), έναν κόκκινο γίγαντα και μια αστρική μαύρη τρύπα. Με την πάροδο του χρόνου θα εξελιχτεί ο κόκκινος γίγαντας σε λευκό νάνο, τα 2 μεσαίας μάζας αστέρια σε κόκκινους γίγαντες και μετά σε λευκούς νάνους, και σε χρόνο πολύ μεγαλύτερο από την ηλικία του σύμπαντος, ο κόκκινος νάνος σε λευκό νάνο. Δηλαδή αυτός που δεν φαίνεται με τίποτα, ο πιο ασήμαντος του συστήματος, θα είναι και ο μόνος που μετά από δις έτη θα λάμπει, έστω και αμυδρά, από το σήμερα εντυπωσιακό πενταπλό αστρικό σύστημα.
  12. Η αναλογία νερού με βαρύ νερό (H2O- HDO) είναι ο βασικός τρόπος να συγκρίνουμε το νερό της Γης με αυτό στους κομήτες και στους αστεροειδείς. Με το τηλεσκόπιο ALMA παρατηρούμε παρόμοια αναλογία σε πρωτοπλανητικούς δίσκους γύρω από νεογέννητα αστέρια. Αυτή η αναλογία είναι στη Γη 3 HDO προς 10.000 H2O, στον 67P/ Tschurjumkow-Gerasimenko 1 προς 1000 και στον πρωτοπλανητικό δίσκο του V883 Orionis, ένα αστέρι με ηλικία μόλις 500.000 έτη, 3 προς 1000. Φαίνεται στη Γη να υπάρχει ελάττωση του ισοτόπου HDO. Κάτι ανάλογο μετράμε και σε κομήτες της ομάδας του Δία (Jupiter family comets). Μάλλον στα ουράνια σώματα που βρέθηκαν κοντά στο όριο του χιονιού στο πρώιμο ηλιακό μας σύστημα (όριο απόστασης από το αστέρι, όπου παγώνει το νερό), έλαβε χώρα μια θερμική διαδικασία ελάττωσης (thermal processing) της αναλογίας του HDO.
  13. Η δημιουργία υπερμεγεθών μαύρων τρυπών στα κέντρα των γαλαξιών αποτελεί ένα μυστήριο για τους αστρονόμους. Ακόμα και στο πρώιμο σύμπαν παρατηρούμε κεντρικές μαύρες τρύπες με εκατοντάδες εκατομμύρια ηλιακές μάζες. Ο πιο προφανής τρόπος ανάπτυξης αυτών είναι η συγχώνευση μαύρων τρυπών, μεγάλης και μεσαίας μάζας. Αυτή η διαδικασία μπορεί να συμβαίνει και στον Γαλαξία μας. Κοντά στην κεντρική μαύρη τρύπα Sag A* διακρίνεται, στα ραδιοκύματα, ένα μοριακό νέφος (Tadpole- γυρίνος). Αυτό φαίνεται να παραμορφώνεται -από σφαιρικό σε επιμήκης- λόγω της περιφοράς του γύρω από ένα υπέρπυκνο αντικείμενο με 100.000 ηλιακές μάζες. Στις ακτίνες Χ διακρίνονται 3 υπέρπυκνα αντικείμενα σε αυτή τη θέση, που πιθανότατα να είναι μαύρες τρύπες μεσαίας μάζας (οι ακτίνες Χ εκπέμπονται από τους δίσκους συσσώρευσης). Δηλαδή πολύ μεγαλύτερης μάζας από αστρικές μαύρες τρύπες αλλά και πολύ μικρότερης μάζας από κεντρικές μαύρες τρύπες γαλαξιών. Η κατάληξή τους θα είναι να συγχωνευτούν με την κεντρική μαύρη τρύπα του Γαλαξία μας.
  14. Πρόκειται για μια αρκετά τυχαία ανακάλυψη, από δεδομένα του αρχείου του (σήμερα παροπλισμένου λόγω του πολέμου στην Ουκρανία) ρωσικού διαστημικού τηλεσκοπίου ακτινών Χ Spektr- R. Η ερυθρολίσθηση της πηγής (J0921+0007) μετρήθηκε z= 6,56, δηλαδή από την εποχή που το σύμπαν ήταν μόλις 800 εκατομμυρίων ετών. Η ύλη στον δίσκο συσσώρευσης γύρω από την κεντρική μαύρη τρύπα 250 εκατομμυρίων ηλιακών μαζών θερμαίνεται αρκετά ώστε να εκπέμπει στις ακτίνες Χ. Η πηγή ακτινών Χ επιβεβαιώθηκε και με το τηλεσκόπιο Chandra.
  15. Θερμά συγχαρητήρια. Θέλουμε να κάνουμε μια σχετική έρευνα στη Λέσβο, αν μπορούμε να ακολουθήσουμε το παράδειγμα του Αίνου. Ελπίζω να το ξεκινήσουμε σύντομα.
  16. Δεν ξέρουμε τι είναι αυτό που βλέπουμε δίπλα στην Ανδρομέδα. Φαντάζει παράδοξο για την σύγχρονη αστρονομία, αλλά μια ομάδα ερασιτεχνών αστρονόμων ανακάλυψε μια τεράστια (στο πεδίο) δομή δίπλα στον γαλαξία της Ανδρομέδας. Με την χρήση φίλτρων Οξυγόνου (ψάχνοντας για αμυδρά άγνωστα πλανητικά νεφελώματα του Γαλαξία μας) μερικοί ανεξάρτητοι αστροφωτογράφοι (δεν πρόκειται για σφάλμα του εξοπλισμού) απεικόνισαν με τις κάμερές τους ένα τόξο που αν βρίσκεται πραγματικά δίπλα στον γαλαξία της Ανδρομέδας, έχει τεράστιες διαστάσεις. Δεν συνδέεται με καμία αστρική ροή του γειτονικού μας γαλαξία (δηλαδή αστέρια από διαλυμένο νάνο γαλαξία). Το πιο πιθανό είναι να πρόκειται για μια δομή του δικού μας Γαλαξία, απλά στο πεδίο όπου βρίσκεται η Ανδρομέδα. Δεν είναι πλανητικό (δεν είναι ορατό στο Υδρογόνο), δεν είναι υπόλειμμα σουπερνόβα (δεν φαίνεται ούτε στο υπεριώδες αλλά και ούτε στα ραδιοκύματα). Φαίνεται μόνο στο Οξυγόνο, τουλάχιστον στις φωτογραφίες όσων ερασιτεχνών προσπάθησαν να το απεικονίσουν. Περιμένουμε τα αποτελέσματα από παρατηρήσεις μεγάλων επαγγελματικών τηλεσκοπίων, ώστε να μάθουμε την απόσταση (αν είναι μέσα στον Γαλαξία μας ή όχι) και την πιθανή προέλευση του μυστηριώδες αυτού αντικειμένου. Τα επαγγελματικά τηλεσκόπια κατά κανόνα παρατηρούνε πολύ μικρές περιοχές του ουρανού (πολύ μικρά πεδία). Έτσι μπορεί να <ξέφυγε> της προσοχής των αστρονόμων μια τόσο εκτεταμένη δομή. Στην φωτογραφία φαίνεται ως μπλε σύννεφο πάνω από τον γαλαξία της Ανδρομέδας Drechsler, M et al. Discovery of extensive OII emission near M31
  17. Η καλύτερη εξήγηση για τα αστέρια Wolf- Rayet είναι ότι πρόκειται για εξελιγμένα αστέρια σε διπλά αστρικά συστήματα μεγάλής μάζας υπό βαρυτική αλληλεπίδραση. Φαινομενικά η εξέλιξη των Wolf- Rayet είναι σαν ένα αστέρι μεγάλης μάζας μετά την καύση του Υδρογόνου στον πυρήνα αντί να εγκαταλείψει την κύρια ακολουθία στο διάγραμμα H/R να <επανατοποθετείται> πάνω αριστερά σε αυτήν, ψηλότερα και από τα αστέρια φασματικού τύπου O. Τα αστέρια Wolf- Rayet έχουν λαμπρότητα 100.000 φορές την ηλιακή και παρουσιάζουν ισχυρές φασματικές γραμμές εκπομπής, με κυρίαρχες αυτές του στοιχείου Ήλιο, αλλά και των Άζωτο, Άνθρακα. Σε μερικά τέτοια αστέρια παρατηρούμε να αναπτύσσεται μια σπείρα σκόνης γύρω τους. Αυτό συμβαίνει όταν αλληλοεπιδρούν οι αστρικοί άνεμοι των 2 αστεριών. Το αστέρι που έχει εξελιχτεί σε Wolf- Rayet παρασέρνει τον αστρικό άνεμο του συνοδού του, που έχει ανακατευτεί και με τον δικό του αστρικό άνεμο. Δημιουργούνται οι κατάλληλες συνθήκες σε αυτή την <ουρά> για τον σχηματισμό σκόνης. Οι αστρικοί άνεμοι των Wolf- Rayet είναι εμπλουτισμένοι σε Άνθρακα και άλλα βαρύτερα χημικά στοιχεία, απαραίτητα για την δημιουργία σκόνης. Συμβάλλουν σημαντικά στον εμπλουτισμό της μεσοαστρικής ύλης σε σκόνη.
  18. Οι Green peas (αρακάς) είναι σφαιρικοί γαλαξίες με διάμετρο μόλις 5000 έτη φωτός και μάζα μόλις το 1% του δικού μας Γαλαξία. Μπορούμε να πούμε ότι είναι κάτι ανάμεσα σε νάνο γαλαξία και σε σφαιρωτό σμήνος. Πήραν το όνομά τους από το σχήμα αλλά και το χρώμα τους- τα κοντινά μας εμφανίζονται πρασινωπά. Αυτό οφείλεται στο ιονισμένο από νεαρά αστέρια Οξυγόνο τους. Με το James Webb οι αστρονόμοι ανακάλυψαν τέτοιους γαλαξίες στο νεαρό σύμπαν, με παρόμοιο φάσμα, αλλά φυσικά πολύ χαμηλότερης μεταλλικότητας. Και φυσικά δεν είναι πράσινα, αλλά λόγω ερυθρολίσθησης τουλάχιστον κόκκινα (το James Webb παρατηρεί στο υπέρυθρο) Το παράδοξο είναι ότι και σήμερα αυτοί οι πολύ μικροί γαλαξίες παρουσιάζουν αστρογέννηση. Μάλλον εμπλουτίζονται από μεσογαλαξιακό αέριο ανανεώνοντας έτσι την πρώτη ύλη για την δημιουργία αστεριών.
  19. Στην Κασσιόπη υπάρχει το νεφέλωμα σουπερνόβα Pa 30. Μέσα σε αυτό φαίνεται ένα ιδιαίτερο αστέρι, που κατάφερε να επιβιώσει από την σουπερνόβα. Αυτές οι σπάνιες σουπερνόβα τύπου Iax προέρχονται από την συγχώνευση 2 λευκών νάνων. Οι 2 λευκοί νάνοι δεν διαλύονται τελείως, όπως συμβαίνει στις SN Ia, αλλά σχηματίζουν ένα πολύ καυτό αστέρι. Μην ξεχνάμε ότι οι λευκοί νάνοι αποτελούνται από εκφυλλισμένη ύλη. Το αστέρι αυτό λοιπόν ονομάζεται αστέρι του Parker και ανήκει στην κατηγορία των αστεριών Zombie. Έχει θερμοκρασία 200.000 βαθμούς και ο αστρικός του άνεμος έχει ταχύτητα 16000 km/s, ένα σημαντικό κλάσμα της ταχύτητας του φωτός. Έτσι δημιουργείται ένα ισχυρότατο κρουστικό μέτωπο με την ύλη γύρω από το αστέρι (ύλη από την έκρηξη σουπερνόβα), με αποτέλεσμα το νεφέλωμα να έχει ιδιαίτερη δομή.
  20. Πότε κορυφώνεται η καμπύλη φωτός? Υπάρχει σχετική πρόγνωση?
  21. Στον Γαλαξία μας θα έπρεπε να παρατηρούμε περίπου 1500 υπολείμματα (νεφελώματα) σουπερνόβα. Αυτό προκύπτει από τον αριθμό αστεριών μεγάλης μάζας που δημιουργούνται στον Γαλαξία, αλλά και την συχνότητα των εκρήξεων SN Ia. Όμως τα νεφελώματα από σουπερνόβα που παρατηρούμε είναι μόλις μερικές εκατοντάδες. Τα νεφελώματα σουπερνόβα χάνουν πολύ σύντομα την λαμπρότητά τους, και επειδή βρίσκονται κατά κανόνα στον γαλαξιακό δίσκο (περιοχή γέννησης αστεριών μεγάλης μάζας) καλύπτονται από σκόνη και αέριο. Μία νέα επισκόπηση στα ραδιοκύματα με το όνομα Australian Square Kilometre Array Pathfinder (ASKAP) φαίνεται να γεμίζει αυτό το κενό παρατήρησης. Αρχικά ένα νεφέλωμα σουπερνόβα λάμπει στις ακτίνες Χ, λόγω μεγάλης θερμοκρασίας, με αποτέλεσμα να απελευθερώνονται ηλεκτρόνια από τους ατομικούς πυρήνες του αερίου του. Μετά από μερικές δεκάδες χιλιάδες χρόνια το αέριο σε ένα τέτοιο νεφέλωμα ψύχεται αρκετά. Ακολουθεί η επανασύνδεση των ατόμων με τα ηλεκτρόνια που απελευθερώθηκαν, με επακόλουθο την ακτινοβολία επανασύνδεσης, ιδίως στα ραδιοκύματα (ουδέτερο Υδρογόνο), μέχρι να μην ξεχωρίζει πια το νεφέλωμα από το υπόβαθρο. Στην <φωτογραφία> της παραπάνω επισκόπησης διακρίνονται πολλά υπολείμματα σουπερνόβα που δεν παρατηρούνται στο ορατό φως.
  22. Όλοι μας έχουμε θαυμάσει τις φωτογραφίες του τηλεσκοπίου James Webb που απεικονίζουν τους πιο αρχαίους γαλαξίες, με το φως να χρειάστηκε 13 δις έτη να φτάσει από εκεί μέχρι το διαστημικό τηλεσκόπιο. Όμως η σημερινή απόσταση αυτών των γαλαξιών είναι πολύ μεγαλύτερη, περίπου 40 δις έτη φωτός, λόγω της συμπαντικής διαστολής. Ακόμα και σε απόσταση 13 δις έτη φωτός το φαινόμενο μέγεθος ενός γαλαξία θα ήταν πάρα πολύ μικρό, πολύ μικρότερο από την ικανότητα ανάλυσης των ισχυρότερων τηλεσκοπίων που διαθέτουμε. Ευτυχώς η εικόνα που μας έρχεται σήμερα αντιστοιχεί στο φαινόμενο μέγεθος της εποχής που το φως έφυγε από τον όποιο μακρινό γαλαξία, που τότε ήταν πολύ πιο κοντά μας. Έτσι ένας αρχαίος γαλαξίας έχει αρκετά μεγάλο φαινόμενο μέγεθος για τα τηλεσκόπιά μας. Το καλύτερο παράδειγμα για το παραπάνω φαινόμενο είναι οι χάρτες της κοσμικής ακτινοβολίας μικροκυμάτων υποβάθρου (CMB). Κάθε κόκκινη κουκκίδα στον χάρτη του δορυφόρου Planc (πυκνότερη περιοχή) και κάθε μπλε κουκκίδα (πιο αραιή σε ύλη περιοχή) αντιστοιχεί σε μέσο μέγεθος (χώρο) 200.000 έτη φωτός, την εποχή της εκπομπής της CMB. Αυτό το μέγεθος του χώρου (κουκκίδα στον χάρτη) στο σημερινό σύμπαν είναι πάνω από 200 εκατομμύρια έτη φωτός, λόγω της συμπαντικής διαστολής. Χώρος που ξεπερνάει κατά πολύ την διάσταση ακόμα και των μεγαλύτερων σμηνών γαλαξιών. Το φως στην CMB έχει μετατόπιση προς το ερυθρό z= 1100, που σημαίνει ότι ο χώρος στο σύμπαν μεγάλωσε κατά 1100 φορές. Αν κάθε κουκκίδα του χάρτη απεικόνιζε 200 εκατομμύρια έτη φωτός και όχι 200.000 έτη φωτός δεν θα είχαμε ανάλυση πυκνότερων- αραιότερων περιοχών στο σύμπαν, αλλά θα επικρατούσε η ομοιογένεια της μεγάλης συμπαντικής κλίμακας.
  23. Χάρη στην επισκόπηση του Dark Energy Spectoscopic Instrument (DESI) οι αστρονόμοι ανακάλυψαν ένα ρεύμα αστεριών στον Γαλαξία της Ανδρομέδας. Παρόμοια αστρικά ρεύματα έχουμε ανακαλύψει στον δικό μας Γαλαξία. Η παραπάνω επισκόπηση μέτρησε τις ταχύτητες 7500 αστεριών στην εσωτερική άλω του γειτονικού μας γαλαξία. Βρέθηκαν αυτά τα αστέρια να έχουν κοινή κίνηση που μάλιστα παραπέμπει σε εξωγαλαξιακή προέλευση. Πριν από 2 δις έτη ο γαλαξίας της Ανδρομέδας συσσώρευσε έναν άλλο γαλαξία. Τα αστέρια της εσωτερικής άλως της Ανδρομέδας προέρχονται κυρίως από αυτόν τον γαλαξία. Και στον δικό μας Γαλαξία η εσωτερική άλως του αποτελείται βασικά από αστέρια που προέρχονται από άλλον γαλαξία, αλλά από συγχώνευση που συνέβη πολύ παλαιότερα, πριν από 8-10 δις έτη. Άλλη μια ομοιότητα του Γαλαξία μας με τον γαλαξία της Ανδρομέδας.
  24. Είμαι από τους τυχερούς που έχω τα βιβλία του. Άφησε πολύ σημαντικό έργο.
  25. Terra astronomy. Με αυτόν τον όρο εννοούμε την αστρονομική έρευνα με δεδομένα που βρίσκουμε στην Γη. Μπορεί να είναι η αναλογία κάποιων ισότοπων, που μας δίνουν πληροφορίες για το μοριακό νέφος όπου δημιουργήθηκε ο ήλιος. Μπορεί όμως να είναι και ιστορικά δεδομένα παρατήρησης. Ένα χαρακτηριστικό παράδειγμα είναι οι καταγραφές εκρήξεων σουπερνόβα, όπως αυτή του 1054 μ.Χ. που σήμερα παρατηρούμε το νεφέλωμά της στον Ταύρο, το νεφέλωμα του Καρκίνου. Οι ιστορικές παρατηρήσεις αυτής της σουπερνόβα μας βοηθάνε στην μελέτη της διαστολής αυτού του νεφελώματος. Οι παρατηρήσεις του Ρωμαίου Hygenius και άλλων παρατηρητών της Μεσογείου, περιλαμβανομένου και του Πτολεμαίου τον 2ο αιώνα π.Χ. συμφωνούν με παρατηρήσεις της ίδιας εποχής από κινέζους αστρονόμους για το χρώμα του Μπετελγκέζ. Και τον αναφέρουν όλες σαν κίτρινο- πορτοκαλί. Δηλαδή να μοιάζει με τον Κρόνο. Αντίθετα, ο Αντάρης αναφέρεται και τότε σαν κόκκινος, όμοιος στο χρώμα του Άρη. Ειδικά οι Κινέζοι περιγράφουν τον Μπετελγκέζ κίτρινο, τον Αντάρη κόκκινο και τον Σείριο άσπρο. Γιατί οι αρχαίοι πολιτισμοί έβλεπαν διαφορετικό χρώμα στον Μπετελγκέζ από εμάς σήμερα? Φαίνεται ότι ο Μπετελγκέζ εξελίχτηκε προς τα δεξιά στο διάγραμμα H/R τα τελευταία χιλιάδες χρόνια. Οι υπεργίγαντες ως εξελιγμένα αστέρια μεγάλης μάζας υπερβαίνουν μια περιοχή του διαγράμματος στον κλάδο των υπεργιγάντων που ονομάζεται κενό Hertzsprung σε μικρό σχετικά χρονικό διάστημα. Όλη η εξέλιξη των αστεριών μεγάλης μάζας είναι σύντομη, μόλις μερικών εκατομμυρίων ετών. Σε ένα διάγραμμα H/R συνήθως δεν βρίσκουμε αστέρια σε αυτό το κενό, κάτι που δείχνει την μικρή σε χρόνο παραμονή των αστεριών εκεί. Για την σχετική μελέτη τοποθετήθηκαν αστέρια με φαινόμενη λαμπρότητα από 3,3 mag στο σχετικό διάγραμμα. Μέχρι αυτή την λαμπρότητα μπορεί το ανθρώπινο μάτι να ξεχωρίσει με βεβαιότητα χρώματα στα αστέρια (μην ξεχνάμε ότι τότε παρατηρούσαν μόνο με τα μάτια τους!). Ο Αντάρης βρίσκεται πολύ περισσότερο χρόνο στην φάση του κόκκινου υπεργίγαντα από τον Μπετελγκέζ, πάντα οι άνθρωποι τον έβλεπαν κόκκινο. Το κενό από αστέρια στο διάγραμμα που αναφερόμαστε βρίσκεται ανάμεσα στον Μπετελγκέζ και τον Κανόπους. Ήδη οι Άραβες και αργότερα ο Brahe αναφέρουν τον Μπετελγκέζ πια ως κόκκινο. Πηγή¨ Colour evolution of Betaigeuse and Antares over 2 millenia, derived from historical records.
×
×
  • Δημιουργία νέου...

Σημαντικές πληροφορίες

Όροι χρήσης